Effects of calsequestrin over-expression on excitation-contraction coupling in isolated rabbit cardiomyocytes.
نویسندگان
چکیده
OBJECTIVE This study investigated the role of calsequestrin (CSQ) in the control of excitation-contraction (E-C) coupling in the heart. METHODS CSQ over-expression was induced in isolated rabbit ventricular cardiomyocytes using an adenovirus coding for rabbit CSQ (Ad-CSQ). After 24 h of culture, CSQ protein expression was increased by 58+/-18% (n=10). An adenovirus coding for beta-galactosidase (Ad-LacZ) was used as a control. RESULTS In voltage-clamped, Fura-2-loaded cardiomyocytes, L-type Ca2+ current (I(Ca,L)) and Ca2+ transient amplitude were both increased in the Ad-CSQ group by approximately 78%. Doubling the external Ca2+ concentration in the control group (Ad-LacZ) increased the LTCC amplitude to a similar degree (85+/-6%), but increased the Ca2+ transient amplitude by 149+/-13%. This suggests that SR Ca2+ release may be inhibited upon CSQ over-expression. Alternatively, nifedipine (0.5 microM) was used to reduce I(Ca,L) in Ad-CSQ-transfected cells to values comparable to control (Ad-LacZ). Under these conditions, Ca2+ transient amplitude was not different from Ad-LacZ, but the SR Ca2+ content was approximately 60% higher as assessed by both the caffeine-induced Ca2+ release and the accompanying Na+/Ca2+ exchanger current (I(NCX)). The cause of the increased I(Ca,L) is unknown. No change in the expression level of the alpha1-subunit of the L-type Ca channel was observed. beta-Escin-permeabilized cardiomyocytes were used to study Ca2+ sparks imaged with Fluo-3 at 145-155 nmol/L [Ca2+]. Spontaneous Ca2+ spark frequency, duration, width, and amplitude were unchanged in the Ad-CSQ group, but SR Ca2+ content was 48% higher than Ad-LacZ. CONCLUSIONS CSQ over-expression increased SR Ca2+ content but reduced the gain of E-C coupling in rabbit cardiomyocytes.
منابع مشابه
Cardiac hypertrophy and impaired relaxation in transgenic mice overexpressing triadin 1.
Triadin 1 is a major transmembrane protein in cardiac junctional sarcoplasmic reticulum (SR), which forms a quaternary complex with the ryanodine receptor (Ca(2+) release channel), junctin, and calsequestrin. To better understand the role of triadin 1 in excitation-contraction coupling in the heart, we generated transgenic mice with targeted overexpression of triadin 1 to mouse atrium and ventr...
متن کاملOverexpression of FK-506 binding protein 12.0 modulates excitation contraction coupling in adult rabbit ventricular cardiomyocytes.
The effect of the 12-kDa isoform of FK-506-binding protein (FKBP)12.0 on cardiac excitation-contraction coupling was studied in adult rabbit ventricular myocytes after transfection with a recombinant adenovirus coding for human FKBP12.0 (Ad-FKBP12.0). Western blots confirmed overexpression (by 2.6+/-0.4 fold, n=5). FKBP12.0 association with rabbit cardiac ryanodine receptor (RyR2) was not detec...
متن کاملMolecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells
In view of the therapeutic potential of cardiomyocytes derived from induced pluripotent stem (iPS) cells (iPS-derived cardiomyocytes), in the present study we investigated in iPS-derived cardiomyocytes, the functional properties related to [Ca(2+) ](i) handling and contraction, the contribution of the sarcoplasmic reticulum (SR) Ca(2+) release to contraction and the b-adrenergic inotropic respo...
متن کاملBiochemical characterization and molecular cloning of cardiac triadin.
Triadin is an intrinsic membrane protein first identified in the skeletal muscle junctional sarcoplasmic reticulum and is considered to play an important role in excitation-contraction coupling. Using polyclonal antibodies to skeletal muscle triadin, we have identified and characterized three isoforms in rabbit cardiac muscle. The cDNAs encoding these three isoforms of triadin have been isolate...
متن کاملEffects of 4 ́-Chlorodiazepam on Cellular Excitation-Contraction Coupling and Ischemia- Rreperfusion Injury in Rabbit Heart
Aims Recent evidence indicates that the activity of energy-dissipating ion channels in the mitochondria can influence the susceptibility of the heart to ischemia-reperfusion injury. In this study, we describe the effects of 4´-chlorodiazepam (4-ClDzp), a well-known ligand of the mitochondrial benzodiazepine receptor, on the physiology of both isolated cardiomyocytes and intact hearts. Methods W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2005